does an absence of correlation imply absence of causality?
No. Any controlled system is a counterexample.
为什么相关不是因果?
random
causal
counter-causal
bias amplification
confounder bias
collider bias
over-control bias
measurement error
sampling error
analytic error
因果推断的类型
RCT
Control on observable: regression/matching/weighting/sub-classification
selection on unobservable: iv/rd/did/fixed effect/synthetic/event study
bounds / partial identification and sensitivity analysis
因果研究的四个步骤(“mostly harmless”)
研究什么关系(relationship)
确定该关系的实验方法是怎样的(experiment design)
确定识别策略(identification strategy)
确定统计推断方法(inference)
从理论到方法
确定假设
假想实验
自然实验
控制变量选择
为什么要做假想实验?
sufficiently well-defined intervention
feasible intervention, manipulative
attributes or causes?
控制实验存在的问题?
Hawthorne effect
External validity
Non compliance
自然实验如何寻找?
randomness
intervention
控制变量如何选择?
pretreatment variable
overcontrol variable
confounder
collider
混淆变量的处理
measurable
unmeasurable
撞子变量的处理
not control it
limit the interpretation
中介变量的处理
produce bias
not control it
limit the interpretation
Some lessons that I gradually learn
what’s the difference between matching and regression?
what’s the difference between statistical models and theoretical models?
we can say limited conclusions with limited data if we don’t have the complete data, instead without saying it. otherwise, we can make no contributions.